电容器发热特性与测量方法

出处: 学修网 发布于:2022-02-26 06:24:47浏览(9390)

1.关于电容器的发热

随着电子设备的小型化?轻量化,部件的安装密度高,放热性低,装置温度易升高。尤其是功率输出电路元件的发热虽对设备温度的上升有重要影响,但电容器通过大电流的用途(开关电源平滑用、高频波功率放大器的输出连接器用等)中起因于电容器损失成分的功率消耗变大,使得自身发热因素无法忽视。因此应在不影响电容器可靠性的范围内抑制电容器的温度上升。

理想的电容器是只有容量成分,但实际的电容器包括电极的电阻因素、电介质的损失、电极电感因素,具体可用图1中的等价电路表示。

图.1

图.1

交流电流通过此类电容器时,会因电容器的电阻成分(ESR),产生式.1-1中所示的功率消耗Pe,则电容器发热。

2.电容器的发热特性

电容器自身的发热特性测量应在将电容器温度极力抑制为对流、辐射产生的表面放热或治具传热产生的放热状态下进行。此外,在电容率的电压依赖性为非线形的高电容率类电容器中,需同时观察加在电容器上的交流电流与交流电压。小容量的温度补偿型电容器应具备100MHz以上高频中的发热特性,因此须在反射较少的状态下进行测量。

2-1.电容器的发热特性测量系统

高电容率类电容器(DC~1MHz区域)发热特性测量系统的概略如图.2所示。

用双极電源将信号发生器的信号增幅,加在电容器上。用电流探头(通用探头)观察此时的电流,使用电压探头观察电容器的电压。同时用红外线温度计测量电容器表面的温度,明确电流、电压及表面温度上升的关系。

图.2

图.2

温度补偿型电容器(10MHz~4GHz带宽)发热特性测量系统的概略和测量状态如图.3所示。

图.3

图.3

组成系统的设备及电缆类均统一为50Ω,将测量试料装在形成微带线的基板上,两端装有SMA连接器。用高频波放大器(Amplifier)增幅信号发生器(Signal GENERATOR)的信号,用定向耦合器(Coupler)观察反射同时即施加在试料(DUT)上。用衰减器(Attenuator)使通过试料输出的信号衰减,用电力计(Power Meter)观测。同时观测试料表面温度。

声明:本文为原创文章,如需转载,请注明来源学修网