手机正在变成终极集大成便携式消费电子平台。它的性能包括:捕捉高质量图像、Wi-Fi网络访问、清脆的音频、更长的通话时间、以及更长的电池寿命。不过,一个主要的设计挑战也正在浮现出来。为了适应高度复杂的移动应用,手机电池仍然需要费很大的力气才能提供足够的峰值功率,这就推动了可为高性能操作提供所需功率的电路的需求,这种电路可以在不过载电池的前提下在短时间内储存大电流。
对高级照相手机制造商来说,最重要的挑战就是提供高亮度相机闪光灯所需的大峰值电流。随着照相手机的分辨率增长到三百万像素及以上,产生高质量图像所需的光通量也已急剧提高。为了匹配数码相机的照片质量,必须以高达2A的电流驱动LED" target="_blank">LED闪光灯,或将氙气闪光管充电到330V以上。手机的其他应用(包括RF功放、GPS导航、互联网访问、音乐和视频)也有可能超过电池电流的供应能力。
设计挑战
照相手机在中度到低度光照条件下需要一个高亮度闪光灯来产生曝光充分的图片。设计师可以选择LED或氙气闪光管,但它们两者都有相应的挑战。
大电流LED闪光灯需要4倍于电池提供的功率,才能产生高分辨率图像所需的光亮度。为了克服功率限制问题,一些照相手机已经采用更长的闪光曝光时间来补偿光通量的不足,而这会导致图片的模糊。
氙气闪光管可提供很好的光照度,但它的闪光曝光时间很短,因此不能用于视频捕捉/电影模式功能。它所需的电解储存电容对纤薄型设计来说体积太大、工作电压很高,两次闪光之间需要较长时间才能充满电,不能用于手机中其他需要峰值功率的应用。
解决为每个LED闪光灯提供1~2A驱动电流问题的方法之一是,用一个电容来储存电流,并在不分流主电池的情况下快速供电。不过,如果采用传统电容要储存大电流,不是需要一个体积非常大的大容量电容,就是需要多个并联起来的中等容量电容。对于空间受限的便携式系统来说,更为实用的解决方案是采用容值非常高的超级电容。通过使用一个超级电容,设计师可以为这些短持续间隔的事件提供所需的大电流,并在这些事件之间通过电池对它们再充电。为了支持电池,设计师可以增加一个很薄的超级电容,这可在不牺牲纤薄手机设计的情况下应对手机的峰值功率需求(如为拍照、音频和视频、无线传输和GPS结果阅读提供闪光)。它也允许设计师通过仅满足平均功耗而不是峰值功耗来最佳地调整电池和功率电路的大小,减少系统的占板面积。
设计一个超级电容
超级电容(SC)是什么?像任何电容一样,一个超级电容基本上也是由两块并行的导电板构成的,中间隔以被称为电介质的绝缘材料。电容的容值与导电板的面积成正比,与电介质的厚度成反比。开发超级电容的制造商通过采用多孔碳材料制造导电板以使得表面积最大,以及采用像分子那样薄的电解液作为电介质以将两块导电板之间距离减至最小,在最小化尺寸的情况下实现了更高的电容值。
采用这一方法,可以制造出容值为16mF~2.3F的电容。这些电容可等效为非常低的内部电阻或ESR(等效串联电阻),这使得它们可在最小化输出电压的同时提供高峰值电流脉冲。通过以相对较小的外形尺寸提供非常高的电容值,这些超级电容降低了系统对PCB板面积的需求。它们可以制造成任何尺寸和形状,而且可在数秒内完成再充电,可将电池寿命延长5倍,并允许设计师采用更小、更轻和更廉价的电池。
固有挑战
不过,这一低ESR在充电过程中为设计师带来了一个问题。在任一系统中,电容在最初使用前都是放空的。随后,当电源电压施加以后,超级电容看起来就像是一个低值电阻。如果该电流不被控制或限制,就会导致一个巨大的尖峰电流。因此,设计师必须实现某种尖峰电流限制措施,以确保电池不会马上耗尽。任何这种类型的电路通常还需要短路、过压和过流保护。
超级电容可用来储存必需的电流,并在不分流主电池的情况下快速供电。与电池一起工作时,超级电容在峰值负载期间释放其储存的电流,在两个峰值负载之间则进行再充电。与纯电池供电设备相比,带超级电容的电源系统可提供高达2倍的电能,而且还可延长电池的寿命。很明显,不管设计师在何时使用超级电容,他们都必须限制尖峰电流。此外,当电压掉到LED闪光灯的工作电压以下时,超级电容就需要再充电。当超级电容充满电时,它必须与充电源断开。另外,它还需要短路保护、源过压保护和过流保护。
超级电容带来的好处
超级电容可以大于500k的周期在数秒内完成再充电,并将电能储存在静电场中。由于完全充满电时只有大负载电流才可能把电压降得过低,因此超级电容的使用也减少了ESR和阻抗。
超级电容可以制造成任何尺寸和外形,不管是扁平型还是小尺寸。超级电容还具有很长的寿命(10~12年)。与电池不同,它们具有非破坏性的开路(高ESR)故障模式。如果一个过高电压施加到该器件上,唯一的后果是ESR的轻微增加,并最终演变到开路状态。整个过程不会起火、起烟或爆炸。