浅析继电器的作用级使用方法

出处: 学修网 发布于:2022-02-26 06:30:45浏览(8190)

  继电器(英文:relay)是一种电控制器件,是当输入量(激励量)的变化达到规定要求时,在电气输出电路中使被控量发生预定的阶跃变化的一种电器。

  它具有控制系统(又称输入回路)和被控制系统(又称输出回路)之间的互动关系。通常应用于自动化的控制电路中,继电器实际上是用小电流去控制大电流运作的一种“自动开关”。因此在电路中起着自动调节、安全保护、转换电路等作用。

  继电器是一种利用各种物理量的变化,将电量或者非电量信号转化为电磁力或使输出状态发生阶跃变化,从而通过其触头或突变量促使在同一电路或者另一电路中的其它器件或装置动作的一种控制元件。

  继电器用于各种控制电路中进行信号传递、放大、转换、联锁等,控制主电路和辅助电路中的器件或设备按预定的动作程序进行工作,实现自动控制和保护的目的。

  继电器的作用

  继电器是一种具有隔离功能的自动开关元件,当输入回路中激励量的变化达到规定值时,能够使输出回路中的被控电量发生预定阶跃变化的自动电路控制器件。它具有能反应外界某种激励量(电或非电)的感应机构、对被控电路实现“通”、“断”控制的执行机构,以及能对激励量的大小完成比较、判断和转换功能的中间比较机构。继电器广泛应用于通讯、遥控、遥测、自动控制、机电一体化及和航天技术等电子设备领域,起到控制、保护、调节和传递信息的作用。

  继电器一般都有能反映一定输入变量(如电流、电压、功率、阻抗、频率、温度、压力、速度、光等)的感应机构(输入部分);有能对被控电路实现“通”、“断”控制的执行机构(输出部分);在继电器的输入部分和输出部分之间,还有对输入量进行耦合隔离,功能处理和对输出部分进行驱动的中间机构(驱动部分)。

  作为控制元件,继电器有如下几种作用:

  1、扩大控制范围:多触点继电器控制信号达到某一定值时,可以按触点组的不同形式,同时换接、开断、接通多路电路。

  2、放大:灵敏型继电器、中间继电器等,用一个很微小的控制量,可以控制很大功率的电路。

  3、综合信号:当多个控制信号按规定的形式输入多绕组继电器时,经过比较综合,达到预定的控制效果。

  4、自动、遥控、监测:自动装置上的继电器与其他电器一起,可以组成程序控制线路,从而实现自动化运行。

  继电器的使用方法

  继电器在使用时一般都是由继电器和继电器底座组合而成,继电器底座可以快速安装在导轨上,并能够吧继电器的线圈和触电的接点引出到底座的快速连接柱上,使得在使用和接线时都非常方便,如果继电器损坏也可以直接将继电器从底座上拔出直接更换,节省了维修时间。

  继电器在使用时应该注意以下几点:

  1、线圈使用电压:线圈使用电压在设计上最好按额定电压选择,若不能,可参考温升曲线选择。使用任何小于额定工作电压的线圈电压将会影响继电器的工作。注意线圈工作电压是指加到线圈引出端之间的电压,特别是用放大电路来激励线圈务必保证线圈两个引出端间的电压值。反之超过最高额定工作电压时也会影响产品性能,过高的工作电压会使线圈温升过高,特别是在高温下,温升过高会使绝缘材料受到损伤,也会影响到继电器的工作安全。对磁保持继电器,激励(或复归)脉宽应不小于吸合(或复归)时间的3倍,否则产品会处于中位状态。用固态器件来激励线圈时,其器件耐压至少在80V以上,且漏电流要足够小,以确保继电器的释放。

  2、瞬态抑制:继电器线圈断电瞬间,线圈上可产生高于线圈额定工作电压值30倍以上的反峰电压,对电子线路有极大的危害,通常采用并联瞬态抑制(又叫削峰)二极管或电阻的方法加以抑制,使反峰电压不超过50V,但并联二极管会延长继电器的释放时间3~5倍。当释放时间要求高时,可在二极管一端串接一个合适的电阻。激励电源:在110%额定电流下,电源调整率≤10%(或输出阻抗《5%的线圈阻抗),直流电源的波纹电压应《5% 。交流波形为正弦波,波形系数应在0.95~1.25之间,波形失真应在±10%以内,频率变化应在±1Hz或规定频率的±1%之内(取较大值)。其输出功率不小于线圈功耗。

  3、多个继电器的并联和串联供电:多个继电器并联供电时,反峰电压高(即电感大)的继电器会向反峰电压低的继电器放电,其释放时间会延长,因此最好每个继电器分别控制后再并联才能消除相互影响。不同线圈电阻和功耗的继电器不要串联供电使用,否则串联回路中线圈电流大的继电器不能可靠工作。只有同规格型号的继电器可以串联供电,但反峰电压会提高,应给予抑制。可以按分压比串联电阻来承受供电电压高出继电器的线圈额定电压的那部分电压。

  4、触点负载:加到触点上的负载应符合触点的额定负载和性质,不按额定负载大小(或范围)和性质施加负载往往容易出现问题。只适合直流负载的产品不应用于交流场合。能可靠切换10A负载的继电器,在低电平负载(小于10mA×6A)或干电路下不一定能可靠工作。能切换单相交流电源的继电器不一定适合切换两个不同步的单相交流负载;只规定切换交流50Hz(或60Hz)的产品不应用来切换400Hz的交流负载。

  5、触点并联和串联:触点并联使用不能提高其负载电流,因为继电器多组触点动作的绝对不同时性,即仍然是一组触点在切换提高后的负载,很容易使触点损坏而不接触或熔焊而不能断开。触点并联对“断”失误可以降低失效率,但对“粘”失误则相反。由于触点失误以“断”失误为主要失效模式,故并联对提高可靠性应予肯定,可使用于设备的关键部位。但使用电压不要高于线圈最大工作电压,也不要低于额定电压的90%,否则会危及线圈寿命和使用可靠性。触点串联能够提高其负载电压,提高的倍数即为串联触点的组数。触点串联对“粘”失误可以提高其可靠性,但对“断”失误则相反。总之,利用冗余技术来提高触点工作可靠性时,务必注意负载性质、大小及失效模式。

  6、切换速率:继电器切换速率应不高于其10倍动作时间和释放时间之和的倒数(次/s),否则继电器触点不能稳定接通。磁保持应在继电器技术标准规定的脉冲宽度下使用,否则有可能损坏线圈。

声明:本文为原创文章,如需转载,请注明来源学修网