压磁式传感器的工作原理图解
压磁式(又称磁弹式)传感器是一种力-电转换传感器。其基本原理是利用某些铁磁材料的压磁效应。
1. 压磁效应
压磁效应
铁磁材料在晶格形成过程中形成了磁畴,各个磁畴的磁化强度矢量是随机的。在没有外磁场作用时,各个磁畴互相均衡,材料总的磁场强度为零。当有外磁场作用时,磁畴的磁化强度矢量向外磁场方向转动,材料呈现磁化。当外磁场很强时,各个磁畴的磁场强度矢量都转向与外磁场平行,这时材料呈现饱和现象。
在磁化过程中,各磁畴间的界限发生移动,因而产生机械变形,这种现象称为磁致伸缩效应。
铁磁材料在外力作用下,内部发生变形,使各磁畴之间的界限发生移动,使磁畴磁化强度矢量转动,从而也使材料的磁化强度发生相应的变化。这种应力使铁磁材料的磁性质发生变化的现象称为压磁效应。
铁磁材料的压磁效应的具体内容
材料受到压力时,在作用力方向磁导率减小,而在作用力垂直方向磁导率略有增大;作用力是拉力时,其效果相反。
作用力取消后,磁导率复原。
铁磁材料的压磁效应还与外磁场有关。为了使磁感应强度与应力之间有单值的函数关系,必须使外磁场强度的数值一定。
2. 压磁式传感器工作原理
压磁式传感器的工作原理 | |
在压磁材料的中间部分开有四个对称的小孔1、2、3和4,在孔1、2间绕有激励绕组N12,孔3、4间绕有输出绕组N34。当激励绕组中通过交流电流时,铁心中就会产生磁场。若把孔间空间分成A、B、C、D四个区域,在无外力作用的情况下,A、B、C、D四个区域的磁导率是相同的。这时合成磁场强度H平行与输出绕组的平面,磁力线不与输出绕组交链,N34不产生感应电动势,如图b所示。 在压力F作用下,如图c所示,A、B区域将受到一定的应力,而C、D区域基本处于自由状态,于是A、B区域的磁导率下降、磁阻增大,C、D区域的磁导率基本不变。这样激励绕组所产生的磁力线将重新分布,部分磁力线绕过C、D区域闭合,于是合成磁场H不再与N34平面平行,一部分磁力线与N34交链而产生感应电动势e。F值越大,与N34交链的磁通越多,e值越大。
| |
|
压磁式传感器结构 | |
由压磁元件1、弹性支架2、传力钢球3组成。 |
3. 压磁元件