隔离器就是将一部分与其他部分中的非理想影响分离开来。在电子电路中,电介质通过阻断直流电(DC)实现电路隔离。那么被隔离的电路如何在一个更大的电气系统中运行呢?这个问题的答案便是本应用报告的主题。
随着德州仪器(TI)和其他供应商推出的产品数量不断增加,隔离信号的传输选项也随之增加,从而使设计人员在产品选择上变得更加复杂。本报告阐述了隔离器的重要特性,并说明了各产品之间的差异和相似之处。
在对电路隔离的必要性进行回顾之后,我们对电介质信号传输的三种方法以及模拟对数字隔离器进行了讨论,并对每一类型数字隔离器的实例进行了描述和对比。
电路隔离的必要性
隔离电路的主要原因是保护电路不受危险电压和电流的损坏。在图1的医疗应用实例中,即使是小量的AC电流也有可能造成致命的伤害,因此需要采用一个隔离层来保护病人。隔离还可对敏感电路进行保护,使其免于受到工业应用中出现的高压损坏。图2的工业实例仅为一个高压测量法。将传感器与实际高压相隔离使得对低压电路的测量成为可能。
图1:电源之间可能的电路通路。
保护原理是将高电压电位(potenTIal)隔离,其可能出现在各系统或电路中,如图3中的线缆应用所示,其中的长距离可以将一个驱动器和接收机隔离。经过如此的长距离,接地可能处在不同电压中。通过隔离,在隔离器而非敏感电路中形成电压差。
图3:设备之间的接地电压差。
如图4所示,通过相对于其他电路组件而言的高阻抗,隔离中断了由电路通路形成的环路。通过中断该环路,噪声电压出现在隔离层上,而非出现在接收机或更为敏感的组件上。噪声电压的高电平可以由外部电流或电压源(例如:电感马达和闪电(lightning))耦合。
3. 电路隔离器
在允许通过电磁或光链路进行模拟或数字信号传输的同时,电路隔离器阻碍了各电路之间的低频电流。数字隔离器传输二进制信号,模拟隔离器则在隔离层上传输连续信号。在模拟和数字隔离器中,工作和峰值额定电压以及共模瞬态抗扰度均为这种隔离层的重要特性。当对数字信号进行隔离时,隔离电路的这些重要特性为输入和输出逻辑电压电平、信号速率、数据运行长度以及自动防护响应。
传统上而言,为满足特殊需求时,变压器、电容器或光电二极管晶体管及分立电路以输入和输出信号为条件。这种方法是有效的,但却不能将其从一种应用转移至另一种应用中。尽管这样可能会保持模拟隔离器的情况,但市场中已经出现了新一代数字隔离器,其使用创新电路在超过100Mbps直流电信号速率的条件下对标准数字信号进行隔离。