先进的MPS同步整流器原理与方案设计

出处: 家电维修网 发布于:2023-08-25 11:35:36浏览(5220)

    先进的 MPS 同步整流器原理与方案设计
  近年来,为了进一步改善全球节能,全球监管机构提出了新的效率标准。随着美国能源部(DOE)出台的一系列新要求,制造商必须提高现有独立电源产品的效率以达到DOE VI级标准,才能在美国市场销售。此外,制造商还需要设计符合其它能源规格的产品,例如欧盟CoC V5Tier2规格。
  为了提高交流转直流适配器的效率,将输出续流肖特基二极管换成基于MOSFET的同步整流控制器(SR)时通常可提升23%或者更高的效率。还有发现使用SR有助于节省二极管散热片成本和人工组装的成本,设计人员还可以使用更便宜的初级MOSFET或者更细的输出线缆来节省成本,且依然能达到目标效率。
  因篇幅所限,本文无法涉及SR设计的全部细节,而精选了几个在工程师设计同步整流电路时一些实际的话题用以讨论。
  SR的连续导通模式(CCM)
  在图1中,反激式SR控制器用于驱动AC / DC适配器中的次级MOSFET开关。这里,反激控制器可以在临界导通模式(CrM),连续导通模式(CCM)或断续导通模式(DCM)下运行。
  
  在CCM模式下和CrM模式下MOSFET封装电感的影响
  次级电流切换时总会有一些开关上升/下降时间(如图2所示),由输入/输出,变压器匝数比和电感来决定。MOSFET封装电感也会影响次级电流的关断。
  随着次级电流开始改变极性并关断(图4中的t1),MOSFET封装电感(Ls)会在检测到的Vds上产生瞬时电压,如公式(1)和公式(2)所示:
  
  当MOSFET的封装电感非常小时(例如QFN或SOIC封装),SR门极相对关断会更延迟。即使在Vds调节控制下降低Vg,反向电流仍然大于具有较高封装电感的MOSFET。这与主题1中介绍的Vds控制无关。
  下面列出了一些改进选项,这些选项可以在同一应用中组合使用。
  选择Qg非常低的SR MOSFET(以加速关断)。
  在SR MOSFET上增加一个RC snubber 吸收电路(以吸收反向电压尖峰)。使用具有高关断电流的SR控制器。增加变压器漏感以减慢关断时的次级电流dI / dt(但会导致更高的初级MOSFET电压尖峰)减缓初级MOSFET导通时的上升斜率(损失效率)。使用具有较高Vds控制电压的SR控制器(图2中使用MPS的MP6902为70mV)。在较高的Vds控制电压情况下,MOSFET可以进入更深的线性区,在开关关断之前Vg就达到很低的水平,从而快速关闭。
  振铃—优点与缺点
  当MOSFET导通和关断时,PCB布局和系统中产生的离散电感与元器件中的寄生电容会导致一些振铃。如果不能适应振铃造成的影响,轻则可能会使效率降低,重则会导致一些致命的问题。
  振铃引起的问题如图4所示。当次级电流下降到零时,初级开关电压Vds在变压器的主电感和MOSFET Cds之间会产生谐振,这个谐振电压会折射到次级侧。通常,这个谐振谷值不应该会接触到地平面,但有时谐振谷值可能会下降到SR的导通阈值。这可能是因为诸如原边RCD缓冲器中二极管的反向恢复等因素引起的。
  由于Vds电压谐振的斜率总是远低于实际开关关断的斜率(得益于较大感量的主电感),因此MPS的MP6908使用独特的可调斜率引脚来帮助确定何时副边MOS真正关断,以及何时是正常的Vds电压谐振(如图4所示)。
  

  图5: MP6908控制器和低侧和高侧的理想二极管应用电路
  总结
  本文介绍了与实际工程情况相关的同步整流器(SR)设计。通过更多地了解终端应用,MPS能够定义和创建更好的SR控制IC。
  审核编辑:汤梓红
声明:本文为原创文章,如需转载,请注明来源学修网